Context-Matching Method as a Transformation Paradigm Between Position and Location Domains in Location-Based Services


  • Oliver Jukić Virovitica University of Applied Sciences
  • Nenad Sikirica Krapina University of Applied Sciences
  • Teodor Iliev
  • Darko Špoljar Krapina University of Applied Sciences,



location-based service, domain transformation


A two-domain approach involving position and location has been introduced to provide a formal description needed for optimal organization of information processing for utilization in Location-Based Services development and operation. This paper proposes the transformation that connects the two domains (position and location), outlines its formal description, and validates the concept using the Context-Matching method as a paradigm.


Metrics Loading ...


GSA. (2020). Report in Location-Based Services User Needs and Requirements. European GNSS Agency. Prague, Czechia. Available at:

Filjar, R., Jezic, G., and Matijasevic, M. (2008). Location-Based Services: A Road Towards Situation Awareness. Journal of Navigation, 61, pp 573-589.

Loonis V., de Bellefon, M-P. (2018). Handbook of Spatial Analysis: Theory and Application with R. Insee Methodes, No.131. Insee &Eurostat. Montrouge, France. Available at:

Efron, B., Hastie, T. (2016). Computer Age Statistical Inference: Algorithms, Evidence, and Data Science Institute of Mathematical Statistics Monographs. Cambridge: Cambridge University Press. doi:10.1017/CBO9781316576533

Wiemann, S., Bernard, L. (2016). Spatial data fusion in Spatial Data Infrastructures using Linked Data. International Journal of Geographical Information Science, 30 (4), pp 613-636. doi: 10.1080/13658816.2015.1084420

Koks, D. (2007). Numerical Calculations for Passive Geolocation Scenarios. Australian Government, Department of Defence. Edinburgh, Australia.

Frattasi, S., Della Rosa, F. (2017). Mobile Positioning and Tracking: From Conventional to Cooperative Techniques. John Wiley & Sons. Chichester, UK.

Filjar, R., Ševrović, M., Dadić, I. (2013). Positioning and localisation for Location-Based Services. Proc of 21st Telecommunications Forum TELFOR, Belgrade, Serbia, pp 1-4. doi: 10.1109/TELFOR.2013.6716158

Filjar, R., Bušić, L., Dešić, S., Huljenić, D. (2008). LBS Position Estimation by Adaptive Selection of Positioning Sensors Based on Requested QoS. Chapter in: S Balandin et al. Next Generation Teletraffic and Wired/Wireless Advanced Networking. Lecture Notes in Computer Sciences, 5174, pp 101-109. Springer Verlag. Berlin and Heidelberg, Germany. doi:

Filjar, R., Damas, M. C., Iliev, T. B. (2021). Resilient Satellite Navigation Empowers Modern Science, Economy, and Society. IOP Conf. Ser: Mater Sci Eng 1032, 012001, doi:10.1088/1757-899X/1032/1/012001

Filjar, R., Sklebar, I., Horvat, M. (2020). A Comparison of Machine Learning-Based Individual Mobility Classification Models Developed on Sensor Readings from Loosely Attached Smartphones. Communications. Scientific Letters of the University of Žilina, 22(4), pp 153-162. doi:

MacKay, D. J. C. (2003). Information Theory, Inference, and Learning Algorithms. Cambridge University Press. Cambridge, Available at:

Tobler, W. (1970). A computer movie simulating urban growth in the Detroit region. Economic Geography, 46(Supplement): pp 234–240.

Gallotti, R., Bazzani, A., Degli Esposti, M., Rambaldi, S. (2013). Entropic measures of individual mobility patterns. Journal of Statistical Mechanics: Theory and Experiment, 2013, P10022

ETSI. (2015). ETSI TS 103 246-1 (V1.1.1). Satellite Earth Stations and Systems (SES); GNSS based location systems; Part 1: Functional requirements. European Telecommunications Standardisation Institute. Sophia Antipolis, France.

ETSI TR 121 900. (2021). Digital cellular telecommunications system, Phase 2+, GSM, (V16.4.0),




How to Cite

Jukić, O., Sikirica, N., Iliev, T., & Špoljar, D. (2021). Context-Matching Method as a Transformation Paradigm Between Position and Location Domains in Location-Based Services. The Journal of CIEES, 1(2), 23–25.