New EMC Effects with Multi-layered Type of EM Shield

Authors

  • Aron Tesfalem Berhe Karadeniz Technical University, Turkey
  • Frank Graebner IMG Electronic and Power Systems GmBH, Germany

DOI:

https://doi.org/10.48149/jciees.2021.1.2.2

Keywords:

Electromagnetic Interference, Shielding effect, Reflectivity, Absorption

Abstract

Electro-magnetic interference is one of the biggest problems which hinder electrical and/or electronic devices from operating efficiently in addition to the negative impact it can have on environment. However, with proper shielding, unwanted electromagnetic interference can be substantially reduced, hence to achieve better EM compatibility among devices and avail safer environment. This paper presents multi-layered electromagnetic shield design analysis by considering different scenarios. The analysis is based on simulation done using MATLAB

Metrics

Metrics Loading ...

References

Raj C. D., Rao G. S., Jayasree P. V. Y., Srinu B. & Lakshman P. (2010). Estimation of reflectivity and shielding effectiveness of three layered laminate electromagnetic shield at X-Band, Progress In Electromagnetic Research B, vol. 20,

pp. 205-223, doi:10.2528/PIERB10030402.

Jayasree P., Surya Baba V., Prabhakar Rao B. & Lakshman P. (2010). Analysis of Shielding Effectiveness of Single, Double and Laminated Shields for Oblique Incidence of EM Waves, Progress In Electromagnetics Research B, vol. 22, pp. 187-202, doi:10.2528/PIERB10051305.

Kodali V. P. (2000). Engineering Electromagnetic Compatibility, Principles, Measurements and Technologies, S Chand and Company Ltd.

Schulz R., Plantz V. & Brush D. (1988) Shielding theory and practice, IEEE Transactions on Electromagnetic Compatibility, vol. 30 no.3, pp 187-201, doi: 10.1109/15.3297.

Jayasree P., Baba V. & Rao B. (2008). Shielding Effectiveness of Laminated Shields, Radioengineering, vol.17 no.4.

Meshram M., Agrawal N., Sinha B. & Misra P. (2003). Transmission line modeling (TLM) for evaluation of absorption in ferrite based multi layer microwave absorber TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region, Bangalore, India, pp 626-630 2, doi: 10.1109/ TENCON.2003.1273246.

Feng Y., Qiu, T., Li X. et al. (2007). Microwave absorption properties of the carbonyl iron/EPDM radar absorbing materials, J. Wuhan Univ. Technol. vol. 22, pp 266–270, doi.org/10.1007/s11595-005-2266-9.

Praveen S., Babbar V., Razdan A., Srivastava S. & Goel T. (2000). Microwave absorption studies of Ca–NiTi hexaferrite composites in X-band, Materials Science and Engineering: B, vol.78 no.2–3, pp 70-74, doi: 10.1016/S0921-5107(00)00511-0.

Han-Shin C. & Sung-Soo K. (1999). M-hexaferrites with planar magnetic anisotropy and their application to high-frequency microwave absorbers, IEEE Transactions on Magnetics, vol. 35 no. 5, pp 3151-3153, doi: 10.1109/20.801111.

Watanabe A., Raj P., Wong D. et al. (2018). Multilayered Electromagnetic Interference Shielding Structures for Suppressing Magnetic Field Coupling, Journal of Elec Materi vol. 47, pp. 5243–5250, doi: 10.1007/s11664-018-6387-2

Gräbner F., Nath P. & Hofinger J. (2019). Wireless-Anwendungen in E-Antrieben störsicher betreiben, Galvanische EMV-Sonderschicht für 1000 bis 2000 MHz, available: https://www.all-electronics.de/wireless-anwendungen-in-e-antrieben-stoersicher-betreiben.

Downloads

Published

2021-12-22

How to Cite

Tesfalem Berhe, A., & Graebner, F. (2021). New EMC Effects with Multi-layered Type of EM Shield . The Journal of CIEES, 1(2), 14–17. https://doi.org/10.48149/jciees.2021.1.2.2