A method for Assemblage of an Open Access Data Set for Research in Geomagnetic Effects on GPS/GNSS Ionospheric Delay in Sub-equatorial Regions


  • Ivan Hedi Virovitica University of Applied Sciences, Croatia
  • Enes Cirikovic Virovitica University of Applied Sciences, Croatia
  • Zeljko Borkovic University of Applied Sciences Hrvatsko Zagorje Krapina, Croatia
  • Renato Filjar University of Applied Sciences Hrvatsko Zagorje Krapina, Croatia




GPS/GNSS, ionospheric delay, geomagnetic conditions, sub-equatorial region


Space weather, geomagnetic, and ionospheric effects are major sources of Global Navigation Satellite System’s (GNSS) Positioning, Navigation, and Timing (PNT) service degradation. Researchers studying the problem often face an obstacle in missing large data sets comprising ionospheric effects variables and space weather ones for their studies. Here a formal assemblage method is proposed for data set assemblage for GNSS ionospheric effects assessment that utilises experimental sets of space weather/geomagnetic observations, and raw GNSS pseudorange observations polluted with uncorrected ionospheric delay effects to estimate Total Electron Content (TEC) as a target variable outlining the ionospheric effects on GNSS. The five Observations Quality Principles (OQP) are proposed for the observations to be used in statistical learning model development to comply to. The proposed assemblage method is demonstrated in a particular case study of an assembled data set for Darwin, NT, Australia, in sub-equatorial zone, using a tailored software developed in the R environment for scientific computing, and a freely available TEC estimation software. The assembled massive data obtained in the demonstration of the proposed method is provided in the open-access manner in support of the international scientific community.


Metrics Loading ...


Filjar, R, Damas, M C, Iliev, T B. (2020). Resilient Satellite Navigation Empowers Modern Science, Economy, and Society. IOP Conf. Ser: Mater Sci Eng vol. 1032, 012001, doi:10.1088/1757-899X/1032/1/012001

EUSPA. (2021). EUSPA User Consultation Platform (UCP) GNSS User Needs and Requirements Library of books for: Aviation, Agriculture, Location-Based Services, Maritime and Inland Waterways, Rail, Public Transport, Road, Surveying, Time & Synchronisation, and Space. European Space Programme Agency (EUSPA). Prague, Czechia. Available at: https://www.euspa.europa.eu/euspace-applications/euspace-users/user-needs-and-requirements

HM Government Office for Science. (2018). Satellite-Derived Time and Position: A Study of Critical Dependencies. HM Government of the UK and NI. Dostupno na: https://bit.ly/2E2STn

Sanz Subirana, J., Juan Zornoza, J. M., and Hernandez-Pajares, M. (2013). GNSS Data Processing – Volume I: Fundamentals and Algorithms. ESA Communications. Available at: http://bit.ly/1tDzJIQ

Strang, G, Borre, K. (1997). Linear algebra, geodesy, and GPS. Wellesley-Cambridge Press. Wellesley, MA

Filić, M, Filjar, R. (2018). Modelling the Relation between GNSS Positioning Performance Degradation, and Space Weather and Ionospheric Conditions using RReliefF Features Selection. Proc of 31st International Technical Meeting ION GNSS+ 2018, pp. 1999-2006. Miami, FL. doi: https://doi.org/10.33012/2018.16016

Filjar, R, Weintrit, A, Iliev, T, Malčić, G, Jukić, O, Sikirica, N. (2020). Predictive Model of Total Electron Content during Moderately Disturbed Geomagnetic Conditions for GNSS Positioning Performance Improvement. Proc FUSION2020, pp. 256-262. Pretoria, South Africa. doi: https://doi.org/10.23919/FUSION45008.2020.9190264

Filjar, R. (2022). An application-centred resilient GNSS position estimation algorithm based on positioning environment conditions awareness. Proc ION International Technical Meeting (ITM) 2022. Long Beach, CA.

Malić, E, Sikirica, N, Špoljar, D, Filjar, R. (2023). A method and a model for risk assessment of GNSS utilisation with a proof-of-principle demonstration for polar GNSS maritime applications. Conference Proceedings of TransNav 2023 Conference. Gdynia, Poland.

James, G, Witten, D, Hastie, T, and Tibshirani, R. (2021). An Introduction to Statistical Learning with Applications in R, 2nd ed. Springer New York. New York, NY. Available at: https://hastie.su.domains/ISLR2/ISLRv2_website.pdf

Davies, K. (1990). Ionospheric Radio. Peter Peregrinus Ltd. London, UK.

Appleton, E. V. (1947). The ionosphere. Nobel Lecture, Available at: https://www.nobelprize.org/uploads/2017/01/appleton-lecture-new.pdf

Filjar, R, Kos, S, Krajnovic, S. (2013). Dst index as a potential indicator of approaching GNSS performance deterioration. Journal of Navigation, vol. 66, issue 1, pp. 149-160. doi:10.1017/S037346331200029X

IGS. (2023). International GNSS Service GNSS RINEX data archive (repository hosted by NASA). Available at: ftp://cddis.nasa.gov/gnss/data/daily/

INTERMAGNET. (2021). The International Real-time Magnetic Observatory Network data archive. Available at: https://intermagnet.github.io

R Core Team (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.R-project.org

Seemala, G. (2023). GPS-TEC Programme rev 3.00. Available at: https://seemala.blogspot.com/

Sikirica, N, Dimc, F, Jukić, O, Iliev, T B, Špoljar, D, Filjar, R. (2021). A Risk Assessment of Geomagnetic Conditions Impact on GPS Positioning Accuracy Degradation in Tropical Regions Using Dst Index. Proc ION ITM 2021, pp. 606-615. San Diego, CA. doi: 10.33012/2021.17852

Heđi, I, Ciriković, E, Borković, Ž, Filjar, R. (2023). Hedji, Cirikovic, Borkovic, Filjar, JCIEES 2023 manuscript, Supplementary material. doi:10.6084/m9.figshare.22579786. Available at: https://figshare.com/articles/dataset/Hedji_Cirikovic_Borkovic_Filjar_JCIEES_2023_manuscript_Supplementary_material/22579786




How to Cite

Hedi, I., Cirikovic, E. ., Borkovic, Z., & Filjar, R. . (2023). A method for Assemblage of an Open Access Data Set for Research in Geomagnetic Effects on GPS/GNSS Ionospheric Delay in Sub-equatorial Regions. The Journal of CIEES, 3(1), 7–11. https://doi.org/10.48149/jciees.2023.3.1.1